Search results for "sucrose transporter"

showing 2 items of 2 documents

The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrh…

2012

We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden- tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members…

0106 biological sciencesSucrose[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesSIEVE ELEMENTSchemistry.chemical_compoundGene Expression Regulation Plantsucrose transporterMycorrhizaePHLOEMROOTSPlant Proteins2. Zero hungerRegulation of gene expression0303 health sciencesPHOSPHATE TRANSPORTERbiologyfood and beveragesARABIDOPSISSUTMedicago truncatulasugar partitioning[SDE]Environmental Sciencessugar transportGlomus intraradicesEXPRESSIONTOMATO SUGAR TRANSPORTERMolecular Sequence DataGENE FAMILYPhosphates03 medical and health sciencesSymbiosisBotanyMedicago truncatula[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSSugarGlomeromycotaSymbiosisGeneMolecular Biology030304 developmental biologyfungiMembrane Transport Proteins15. Life on landbiology.organism_classificationMONOSACCHARIDE TRANSPORTERYeastCarbonchemistryHeterologous expression010606 plant biology & botanyMolecular plant
researchProduct

Medicago truncatula

2012

In plants, long distance transport of sugars from photosynthetic source leaves to sink organs comprises different crucial steps depending on the species and organ types. Sucrose, the main carbohydrate for long distance transport is synthesized in the mesophyll and then loaded into the phloem. After long distance transport through the phloem vessels, sucrose is finally unloaded towards sink organs. Alternatively, sugar can also be transferred to non‐plant sinks and plant colonization by heterotrophic organisms increases the sink strength and creates an additional sugar demand for the host plant. These sugar fluxes are coordinated by transport systems. Main sugar transporters in plants compri…

[SDE] Environmental Sciences570Sucrose transporterMonosaccharide transporterMST[SDV.SA] Life Sciences [q-bio]/Agricultural scienceschampignonfungifood and beverages500Sugar partitioningArbuscular mycorrhizal symbiosisSUTsugar transport sucrose transporter SUT monosaccharide transporter MST sugar partitioning Medicago truncatula Glomus intraradices arbuscular mycorrhizal symbiosis.Pas de mot-clé en français[SDV] Life Sciences [q-bio]sucreFOS: Biological sciencesSugar transportMedicago truncatulaGlomus intraradices[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyluzerne tronquée
researchProduct